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3 ABSTRACT
We derive lower bounds for the norm of the inverse Vandermonde
H matrix and the norm of certain inverse confluent Vandermonde
matrices. They supplement upper bounds which were obtained in

previous papers.
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EXPLANATION

\ | !_i
i The sensitivity of a system of linear algebraic equations t4 ;

small perturbations in the data depends in large measure on the
magnitude of the inverse of the coefficient matrix. It is therefore
of interest to estimate the norm (i.e., the magnitude) of the
inverse of a matrix. We do this here for the Vandermonde matrix

and certain related matrices, which occur frequently in problems of

numerical analysis, providing lower bounds for the norms in question.

Upper bounds, and exact formulas in special cases, have been given

previously.
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ON INVERSES OF VANDERMONDE AND CONFLUENT VANDERMONDE MATRICES III

Walter Gautschi

§ i ;giégggg;igg. Norm estimates for the inversc of a Vandermonde matrix, or the
inverse of confluent Vandermonde matrices, have been the subject of several previous
papers [1], [2], [4]. The emphasis there was on upper bounds in the case of general
complex nodes, or identities when the nodes are positive [1], [2] or real and symmetric
with respect to the origin [4]. We now wish to supplement these results by providing
lower bounds in the case of arbitrary complex nodes. We obtain these bounds by applying

Jensen's formula in the theory of analytic functions to appropriate polynomials.

2. Jenscn's formula for polynomials. Given a polynomial

n
2) = Sl an .
(2.1) p(z) a0 alz + + an? M an #0 ,

with complex coefficicents au, let gl,cz,...,;n denote its zcros ordercd such that

Pt =le gl el d SRiail R et ol s r e = e

Jensen's formula, applied to (2.1) on the unit circle, then gives [06]

9

X2 n

alg
n-rEl

020 i0
¢ | = exp (G- [ onlpte®) |ao) ,
0

. i0
hence, letting M = mas Ip(e ) I,
0<6<2m

n
S Wt B rpliEh uZo {2

Thus,

n n
(2.3) Z |au| al |anl TjT max(1,|cv]) ¥
u=0 v=1

Equality in (2.3) holds if and only if e TR i.e., pl(2) = a,

Indeed, if p(z) = anzn. then (2.3) (with equality) is trivial. Conversely, if we have

n
z

Sponscred in part by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Science Foundation under grant MCS 76-00842A01.




B i AR ad Sl s i | i o i i 0 S o G Sin o st S g+ s

H equality in (2.3), we must have equality in (2.2), hence, by Jensen's formula,

Ipte’®)] =M for o0 <@ <2n since

] i
y n n
) i0, (2 — i(k-2)8 iXe i
- i« T a5ttt 3
k- k,2=0 A=-n
3 {
- is a trigonometric polynomial, with coefficients ;
i -]
3 o= I oaa ey =5
R 1 k==
(the convention au =0 if p <0 or M >n is used here), it can be constant equal
< 2 s 2 ‘ <
; to M only if ¢ = ¢ = ekl sie B =08 andi e =iMEL S he! fiirst condiition,. c©. = 0,
£h® . n n-1 1 0 n
¥ -
3 implics a a =0, hence a_ =0 (since a # 0). The second condition,
* n O 0 n
ot ar;] + an 150 = 0, then gives al = 0, and continuing in this manner, we find recursively
* ) - :
<
= = et = =0
' ao tl] an_l
R
3 We denote the Vandernonde matrix of order n by
(i 1 5.0
{ 3
{
! 2, z, & Sic z
2 i (3L) V. (z) = . . . '
n . : 5
An-l zn—1 zn-]
T 2 N
where 70 = [21'22""'zn] is a vector of n  complex numbers, called "nodes". If the 3
nodes are mutually distinct, then Vn(z) has an inverse, which we denote by
=1 n
. 3:2 \% z) = .
3 ( ) 5 (z) [“Au]

Agu=l

We are interested in the £ -norm of (3.2),

=5 i
“Vn (z) ”w = max y !u

1<<n =1 Al

Theorem 3.1. If 2. ,%2_ ;0042 are mutually distinct complex numbers, and n > 1, then
Seemeoemecogaienels —_— 1 2 I —_— Je———

n max(1,]|z |
i <

| (3.3) v e ll, > max TT ——
1<x<n v=1 ,zA ~ zvl
v#A
." _2..
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Proof. We recall [4]) that the elements UXu in (3.2) are the coefficients of the

fundamental Lagrange interpolation polynomials associated with the nodes zv,

n 2 ™ & n-1
£ 4) Tl rey e ot ,
v=1l A v 4
VA '-

Applying (2.3) and the remark following (2.3i to the polynomial of degree n - 1 in (3.4),

we find

” .
1 :
(3.5) I el = (T ) T T maxc,]z | .

u=1 NEDY NEDY

If AO is the index A for which the right-hand expression in (3.5) attains its
n
maximum, then that maximum is less than Z IUA
n u=l o"
max ) |u, |. This establishes (3.3) and proves Theorem 3.1.
l<p<n ;=1 Au
SAST |

The lower bound in (3.3) supplements the upper (attainable) bound in [1], which is

[, $ience less or cqual than

of thce same form as (3.3) except that the L -norm of the 2-vectors Il,zv] in the numerator

factors is replaced by the ll—norm.

4. Inverse confluent Vandermonde matrices. The technique used in the prcof of

Theorcem 3.1 can be adapted to conflucent Vandermonde matrices. We illustrate this with

the particular matrix

— . =

1 1 e 3 0 0 s 0

e
z1 22 v zn . 1
2 2
z z s B 2z 2z Vi 2z
@.13) 0. @2y = b | 2 n 1 2 n
2n

2n=1 2n-1 2n-1 2n-2 _2n-2 2n-2
bz1 Z, cee 2 (2n 1)/_1 (2n 1)‘_2 e 2N ])zn o

considercd previously in [1], [2].

Theorem 4.). If z,.2,,...,2 ~ are mutually distinct complex numbers, and n > 1, then

T e e _— 1 2 n
ko A
(4.2) v, (2) > max b Mg ot Sl
o ¥ 1<x<n N oy=l ENREN :
v#A
=g




where bX is the larger of the two quantities

(2)

(1)
€3 b = max(1, |z, ), B, - max[2| 7 1tz; = zv)l, Il + 3z, ¥ 1z, - zv)“ 3
NED) v#EL
Proof. We have [2] ]
-1 v
Uzn o [w]: v [VA ]l W = [wkul . <
where
]
2n
2 u-l
1 (2) 11 - 283 (2,) (2 = 2,)] = u§1 VyuZ #
(4.4) 1 < X<in,
2n
2 u-1
L(2)(z - 2) = ) w z
A A u=t Au

and Ex(z) denotes the fundamental Lagrange interpolation polynomial in (3.4). Applying

(2.3) to the polynomials in (4.4), and taking note of the remark following (2.3), one finds

j 2 2
v I '
u=1 A“
3 () .
I fe > 2 T : :
p=1 = ¥ V£
(1) (2) £ ; . ; ) ) . 5
where bA ’ bA are as defined in (4.3). Denoting the products I | on the right by
-1 n 2n V#A ]
n., and observing that ”U ” = max(max z |v l, max 7 |w |), an argument similar
A : 2n'w A > A
A u=l x u=l
, (1 -1 (2) -1 E
to the one after (3.5) will show that by ny < [luy |l o by n < flu |l for a1l
o ; ey - G2 = . : vy i
A=1,2,...,n, hence max(b B ) 1P I[U ]I for all X = 1,2,...¢ns This proves
X X A an'lw
Theorem 4.1.
The lower bound in (4.2) supploments the (attainable) upper bound in [2], which is
of the same form as (4.2) c¢xcept that the Ew-norm of the 2-vectors (],zvl in the numerator |
factors, and the £ _-norms defining b;l) and b;z) are all replaced by the respective j
£1—norms. In the case of positive nodes zv another (usually sharper) lower bound can i

be fourd in [3, Theorem 2.1).

sl o
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5. Examples.

x e21!1'(v-1)/n

3 O 5 tf 1
Example 5.1 (roots of unity). z,

P D s S Y

In view of

n u-1
2, (2) =2 % i) =R
n z
p=1 A

we obtain from (3.4), and from (4.4) after a little computation,

-1 i -1 SR
(5.1) an (]| =1, ”UZ,,“’-’"m‘ 2

3=

The lower bounds in (3.3) and (4.2) both evaluate to 1/n, while the upper bounds in [1],
19} are ¥ Y/n and (o - 304 i respectively.

Example 5.2 (roots of unity on half-circle). z = e”™ UM,y o5 n, where

n = [N/2] + 1.

- 1
The true norms of an and U

on’ as well as the lower bounds of Theorems 3.1 and

(2)

4.1 and the upper bounds in [1], [2] arc shown in Table 5.1 for N = 5(5)20 It is

interesting to note how deletion of the roots of unity on a half-circle results in

L |

substantially larger values of Ilv;l”m and ”UZn”m'
=3 =)
v ]
v, o2,
N n lower true upper lower true uppcr
5 3 7.24 (-1) 1.89 2.89 1.57 1.79(1) 4.194(1)
10 6 217 1.47(1) 3¢75:(1) 8.29 25 361(3) 1.56(4)
15 8 4.25 2.03.(2) 5.45/(2) 1.46(2) 6.18(5) 4.48(6)
20 il 1.17(1) 2.76 (3) 1.20(4) 1.52(3) 1 89(8) 3.03(9)
o e e i et il <t e i S i e it et gt —

Table 5.1. Norm estimates for Example 5.2.

2 n
T S <. " Wons ' 5 I e
Example 5.3. e (z) =0, v =1,2,...,n, where nole) &) 4 2s oo
Using the zeros of e tabulated in [5], we obtain the results in Table 5.2.

2 ‘—_~._- 3 Sk 2 2
{ )Thc integers in parcentheses indicate exponents of 10.

-5~
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Example 5.

Similarly

of

cffect

N n

5 3
10 O
15 g
20 10

4. ON(ZV) = 0, Im zv =0, u= L D e oDy

where n = [

=L -1
1
I, 32,
n lower true upper lower true upper
5 1L12 2.08 3,93 4.76 2.21(Q1) 7.90(1)
10 2.44 5. 22 1.45(1) 4.45(1) 2.52(2) 1.96(3)
5 7.45 1.69(1) 5.71(1) 6.08(2) 3.69(3) 4.22(4)
20 2.27(1) 5.36(1) 2.62(2) 7.54(3) 4.79(4) 6.84(5) ¢
Table 5.2. Norm estimates for Example 5.3.

+ 14]
> .

Table 5.3,

in:reasing the norms of

in Example

i
n

Norm estimates for

and

=]
| [T
2n

-G=

Example 5.4.

vt o 2,

J-_—l—o_\;(_»r true upper l;;:r true upper )
1.62 2.74 3.13 6.69 2.51(1) 3.29(1)
571 1.09(1) 1+27¢3) .38 (2) 6.15(2) 8.35(2)
3.07 (1) 6.82(1) 8.63(1) 5.70(3) 3.24(4) 5.19(4)
1.60 (2} 3.60(2) 4.49(2) 1.88(5) 1.07(6) 1.66(06)

5.2, deletion of the zeros in the lower half-plane has the
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